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Abstract

Purpose: To describe a new method for the automatic generation of process
parameters for Fused Filament Fabrication (FFF) across varying machines and
materials.
Methods: We use an instrumented extruder to fit a function that maps nozzle
pressures across varying flowrates and temperatures for a given machine and
material configuration. We then develop a method to extract real parameters for
flowrate and temperature using relative pressures and temperature offsets.
Results: Our method allows us to extract viable process parameters, using one
set of input parameters, across all of the machine and material configurations
that we tested, even in materials that we had never printed before.
Conclusion: Rather than using direct parameters in FFF printing, which is are
time-consuming to tune and modify, it is possible to deploy machine-generated
data that captures the fundamental phenomenology of FFF to automatically
select parameters.

∗Official contribution of the National Institute of Standards and Technology; not subject to
copyright in the United States.
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1 Introduction

Fused Filament Fabrication (FFF)[1] is a rapid prototyping process where tracks of
molten polymers are extruded line-by-line and layer-by-layer through a heated nozzle
in order to build a part. The process continues to rise in popularity due to its low cost
and simple nature, and is especially prevalent amongst open source machine builders,
where a proliferation of new machine designs and material options is continually
emerging.

FFF printing requires that part geometries be transformed into machine instruc-
tions in a process called slicing, to do so we use software packages aptly named
“slicers”. In order to print successfully, slicers must be configured such that the
instructions they generate work with the particular machine and material being used
downstream. For example, two of the most relevant configuration parameters that
must be selected are the nozzle temperature and the material flow rate; the first is
set directly and the second is set indirectly as a function of track width, height, and
speed. These parameters relate to the materials’ properties as well as to the particu-
lars of the machine: nozzle diameter is of course one major factor affecting flow rate,
as is the overall thermodynamics of the nozzle (i.e., melt zone length and shape) and
the extruder’s ability to produce pressure.

Instead of inferring optimal parameters from state-of-the-art models, most slicers
deploy process parameter sets that are hand-tuned via extensive trial-and-error. Not
only is this time-consuming, it is also non-transferable across machines or materials:
one parameter set is unique to one complete FFF configuration, meaning a machine
(hot end design and nozzle diameter) and a material. This leads to wasted time,
material, and sub-optimal prints, and especially presents a challenge to those among
us who build or modify their machines to perform beyond where most heuristic sets
have been refined, or who use novel materials that are recycled [2][3], derived from
biological origins [4], or have advanced properties including cell-free and cell-laden
bioinks [5] and conductivity for additive electronics production [6].

The development of machines that can forgo this hand-tuning process may speed
the development of new FFF printers and the adoption of new and renewable FFF
materials. We try to do so in this paper. However, rather than backing into a complex
modelling exercise, we develop a workflow that deploys a simple function fit with
an online data-gathering routine to automatically select process parameters using an
instrumented extruder that extends work from Coogan and Kazmer [7]. The workflow
replaces roughly half of the hand-tuned parameters in state-of-the-art slicers with one
data set (generated with the matching machine and material within tens of minutes
and tens of grams of filament) and one additional input parameter that specifies
temperature and flowrate in relative terms.

We found that our method can consistently pick viable print parameters for known
and unknown materials when we used it to print a series of benchmark models using
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machine configurations that we had not tested previously. We were also able to do this
using the same input parameter across all configurations. We hope that this method
will be especially relevant to the emergence of advanced and sustainable material
blends, whose adoption is hampered by users’ not having reliable access to viable print
parameters.

So, in this paper we provide some background on the FFF process in Section 1.2,
and also an overview of how FFF process parameters are articulated in state-of-the-art
slicers in Section 1.3. In our methods section (2) we provide detail on our instrumented
extruder (2.1) and data-gathering routine (2.2), as well as the shape of our function
fit (2.3) that maps pressure as a function of flowrate and nozzle temperature set-point
P = f(Q,T ). In Section 2.4 we explore the connection between our function fits for
poly lactic acid (PLA) and acrylonitrile butadiene styrene (ABS) and heuristically
developed parameter sets for the same, and show how we selected a single input
parameter for any configuration. We summarize how the system is deployed in Section
2.5. Finally in our Results section (3) we deploy our workflow on a litany of materials
and on two machine configurations. Finally, we discuss limitations and future work in
Section 4 and conclude the paper in Section 5.

1.1 Related Work

Although some slicers can directly transmit low-level instructions to machines [8], and
other tools omit the slicer entirely such as FullControl GCode Designer1 in which users
create print paths with Microsoft Excel [9] and p5.fab for direct control over FFF
printing parameters through creative coding [10], only one that we found can read data
or configurations directly from an FFF machine; all others are configured in a feed-
forward manner. The ORNL Slicer 2.0 developed by Oak Ridge National Laboratory
is based on an on-demand process that gathers sensor information at each layer and
provides feedback to the slicer, before generating partial G-code for the next layer.
Sensors are used in the form of thermal cameras and laser profilometers [11]. Other
instrumented printers that measure quality variables with sensors include: [12] and
[13]. Kumar et al developed a low-cost multi-sensor strategy for error detection during
FFF printing, and used sensors for measuring vibration, current, and sound [14].

Perhaps the closest aligned work to our own are two vision-based methods [15] and
[16]. While these two methods are more effective parameter fine-tuners, they require
an initial set of printing conditions that produce viable output, whereas ours does not.
They also both require more input data than does our method. That said, their end
results are of a higher overall quality than ours, meaning that a combination of our
method (to set initial conditions) and vision-based fine tuning is a viable path towards
optimal printing.

The physics of FFF printing are well understood in the literature [17][18] and it is
likely possible to develop full-scale models of the FFF process that could relate mate-
rial models directly to machine models in order to pick optimal slicer configurations.
However, to our knowledge no-one has made substantial effort to apply these models

1Certain commercial equipment, instruments, or materials are identified in this paper in order to specify
the experimental procedure adequately. Such identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available for the purpose.
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to automatically select parameters for FFF machines, although much work has been
done to evaluate the effects of parameter selection on the quality of printed outputs
[19] [20] [21] [22] [23] [24]. The focus in this work is on how to rapidly select operating
parameters from a short, online rheological experiment.

1.2 The FFF Process, Extruder, and Limitations

FFF is simple in principle but becomes complex when examined in closer detail. We
provide a diagrammatic representation of the basics in Figure 1. In a coarse view, FFF
machines push a thermoplastic filament into a heated cylinder using hobbed drive
gears. As the filament travels through this hot end it melts, and is extruded out of
a small diameter nozzle (e.g., 0.4mm). The molten extrudate is deposited in tracks,
which are composed into layers and subsequently complete parts, by moving the nozzle
very precisely as this extrusion is going on.

Fig. 1 This figure shows a diagrammatic example of a typical FFF extruder, where a cylindrical
filament is pushed, using hobbed drive gears, through a heated nozzle to precisely lay tracks on a
moving bed.

Inside the nozzle and melt-zone, classical rheological models can be easily applied
[25]. Indeed, [7] uses an instrumented extruder similar to the one in this work to fit data
to these rheological models, showing that much of the FFF process can be modelled
as such. These models can tell us how much pressure needs to be generated inside of
a nozzle of a given shape, with a given polymer, in order to achieve a given flow-rate.

However, real-time operation of an FFF machine is often much more dynamic
than this, especially because flow-rates are constantly changing; it is important to
remember that even though feedrates are set at constant velocities, machine controllers
are continuously changing actual velocities as they limit acceleration into and out of
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corners [26]. This means that models appropriate for steady-state rheology may not
map well into real FFF operation.

At maximum flow-rates, system limits are almost entirely thermodynamic [27].
Acknowledgement of this insight is evident in the FFF community’s recent deployment
of nozzles like the Bondtech CHT [28] and the E3D Revo High-Flow [29] that both
increase nozzle-to-filament surface area (to improve conduction) in order to increase
flow.

The nozzle is only one component of the complete dynamics of the FFF process.
Also important to consider is the mechanical limit to nozzle pressure generation [30].
FFF extruders typically use hobbed shafts that are preloaded into the filament in order
to drive material into the nozzle. Filaments eventually shear under the stresses exerted
on them by these hobbed shafts, meaning that only a limited amount of pressure
can be supplied to the nozzle. This limit is acknowledged in the design of the Prusa
Nextruder, which increases the extruder’s ability to generate pressure by increasing
the number of sites at which the extruder’s hobbed gear is engaged with the filament.

Further complexity in FFF can be found outside of the extrusion process itself. As
we will see in this work, flow can always be increased by increasing nozzle temperature,
but over-heating filament in the nozzle can lead to slumping of the printed part. This
is simple to understand: once printed, the filament is unconstrained and if it is too
molten it will not hold its deposited shape. To compound this, the filament is typically
resting on a previous layer of filament, and so prints need to be strong enough, as
they are being printed, to remain self-supporting. This phenomenology has led to the
inclusion of ‘part cooling fans’ in most extruder designs that allow nozzle temperatures
to remain large while quickly cooling filament on exit to avoid slumping.

Slumping would be perhaps the most complex aspect of FFF to capture accurately;
a prospective modeler would need not only to understand the nozzle and extruder,
but also the part geometry itself, the machine’s complete set of motion dynamics (to
estimate real layer times), and information about the part’s cooling rate, the materials’
own thermodynamic properties, and perhaps even expectations about the ambient
temperature and airflow around and within printer.

1.3 Typical FFF Parameter Sets

Rather than try to model all of these process intricacies (and additionally try to
articulate what “optimal” configurations might be), state-of-the-art slicers simply use
a large number of user-specified feed-forward settings (a configuration) in order to
develop their outputs. These configurations are hand-tuned via trial and error and are
specific to a complete machine, material set; whenever a nozzle diameter, extruder
design, or material is changed, a new configuration must be developed or adapted.

Many settings are geometric in nature (layer height, infill density, infill patterns,
and shell thicknesses), and we consider these settings to be outside the scope of this
paper. Here, we are primarily concerned with what we see as the two most important
(and difficult to determine) parameters, which are print speeds (in terms of flowrates)
and temperatures. In our survey of two popular slicers, some data from which is avail-
able in Table 1, nearly half of the total settings available in any given configuration
were related to flowrate and temperatures (we present only these settings in the table),
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Table 1 To understand how FFF machine instructions are generated in practice, we include here a
table of settings from PrusaSlicer that affect flow-rates and temperatures directly.

Settings Section Setting Units Typical1

Filament Settings / Filament Temperature ◦C 215

Filament Settings / Advanced Max Volumetric Speed mm3/s 15

Print Settings / Layers and Perimeters Layer Height mm 0.2

Print Settings / Speed Perimeters mm/s 45
Small Perimeters mm/s 25
External Perimeters mm/s 25
Infill mm/s 80
Solid Infill mm/s 80
Top Solid Infill mm/s 40
Supports mm/s 50
Supports Interface % 80
Bridges mm/s 25
Gap Fill mm/s 40

Print Settings / Advanced / Width Default Extrusion mm 0.45
First Layer mm 0.42
Perimeters mm 0.42
External Perimeters mm 0.42
Infill mm 0.42
Solid Infill mm 0.42
Top Solid Infill mm 0.4

1These reference values are included from a configuration file for ”Generic PLA” extruded through
a 0.4mm diameter nozzle with an E3D V6 hotend. This closely matches the reference configuration
of our instrumented extruder.

Table 2 Volumetric flow-rates are not directly exposed in slicer configurations. Here, we use
indirect settings from Table 1 to calculate some resulting flow-rates. Track types that are configured
to exceed maximal flowrates are bolded.

Track Type Height mm Width mm Rate mm/s Flowrate mm3/s

0.2mm ”Quality”

Perimeters 0.2 0.42 45 3.78
External Perimeters 0.2 0.42 25 2.10
Infill 0.2 0.42 80 6.72
Supports 0.2 0.45 50 4.50

0.2mm ”Speed”

Perimeters 0.2 0.42 60 5.04
External Perimeters 0.2 0.42 25 2.10
Infill 0.2 0.42 200 16.8
Supports 0.2 0.45 50 4.50

but the relations were all indirect. For example, flowrate appears directly only once,
in the aptly-named Max Volumetric Speed setting: elsewhere it is encoded indirectly
by a combination of layer height, track width, and linear speeds. In Table 2, we cal-
culate actual flowrates for a few different track types given typical values. Some of
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these flowrates exceed maximum flowrates (as specified elsewhere), we present those
in bold. Nozzle temperatures at least are uncomplicated and direct, and are assigned
per material.

Since a considerable number of hours have been spent by FFF community members
tuning these values, we can assume that they contain some insight as to how FFF
machines should be operated, even though the exact logic behind any given value is
not explicitly clear. The first take-away from these parameters is that speed is often
reduced when detail or precision is required (i.e., on external and small perimeters,
and is maximized (towards apparent maximal volumetric flowrates) when it isn’t so
important (i.e., during infill). However, flowrates and temperatures are not all that
informs these values: lower speeds also imply higher quality of motion from a machine’s
linear axes and dynamics.

2 Methods

Given the development of instrumented extruders, we wanted to develop a method for
print parameter selection that lay somewhere between the use of complete and complex
models of the FFF process [31] (which seems daunting and messy), and state-of-the-art
feed-forward (and blind) solutions. We also wanted our process to be deployable as an
online solution; something users might run just ahead of any new print, or whenever
they load new filament into a machine.

To do so, we developed a simple function fit that relates typical nozzle pressure to
an operating temperature and flowrate P = f(T,Q) that we can generate using data
that only takes a few minutes to collect.

Then, using the function fit, we can extract real parameters using input parameters
that describe temperatures Trel as offsets from initial-flow conditions, and that select
flowrates based on pressures Psel relative to the extruders’ maximum pressure.

Together, these methods combine into a workflow that we describe in Section 2.5,
where novel materials can be loaded into our printer, a set of parameters can be
automatically generated and loaded into a slicer software, and prints can be carried
out.

To aid in other researchers’ reproduction and extension of this work,
we have published a git repository at https://gitlab.cba.mit.edu/jakeread/
online-measurement-for-parameter-discovery-in-fff that includes mechanical designs,
circuit designs, and source codes for the firmwares, frameworks, and experiments
discussed in this paper.

2.1 Instrumented FFF Extruder

Following work on in-line rheological monitoring [7], we designed and built an FFF
extruder (shown in Figure 2) that allows us to measure a nozzle-pressure analog and
to detect filament slip at the drive gears. We render the extruder here in Figure 2.

While [7] used an in-line pressure transducer in their work, we avoid the costly and
complex nozzle modification by instead measuring pressure indirectly. Our extruder
mounts the hotend to the machine chassis via a loadcell, meaning that any force
exerted by the filament on the nozzle is measured in this loadcell. This has the possible
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Fig. 2 We designed and built an instrumented extruder for FFF 3D Printing. It is largely the same as
most Commercial Off-the-Shelf (COTS) FFF extruders, using and E3D V6 hot end (D) and BondTech
drive gears (B). To this assembly we add a loadcell (C) that sits in the middle of the structural loop
between the drive gears and the hotend, meaning that it measures all of the force exerted by the
drive gears onto the filament. We use this reading as a pressure analog. Additionally, we developed
a filament sensor (A) that measures the real linear feed rate of the filament (A:1) using an idler
gear attached to an encoder (A:3) preloaded by an idler roller (A:4). The roller is pre-loaded using a
flexural hinge (A:5) and a lever arm. A hall-effect sensor (A:2) reads the displacement of this lever
arm; these readings are calibrated and used to measure real filament diameter. More detailed figures
and CAD models of these components are included in the repository referenced at the beginning of
this section.

disadvantage of reading external forces as well (such as friction between the filament
and the hotend tube’s sidewall), and forces exerted on the nozzle by (for example)
existing tracks of filament, but we found the measurements useful regardless, as our
work does not yet attempt to measure nozzle pressure during printing.

We additionally developed an instrument that measures the width and linear feed-
rate of the filament before it enters the nozzle, based on a design from [32]. This is
also pictured in Figure 2. It does so with two idler wheels, one of which is hobbed
in the same manner as the extruder’s drive gears, the other of which is passive. The
hobbed idler is fitted with a rotary encoder to sense linear feedrate of the filament
and the other is attached to a swing-arm, whose displacement is analogous to changes
in filament thickness. Together, these readings can tell us the real volumetric feedrate
of filament into the extruder. In this work, we use this instrument solely to detect
filament slip, i.e. cases where the extruder’s linear feedrate reads near zero but the
drive motor is continuing to spin.

While our extruder is instrumented, its performance should be fundamentally sim-
ilar to many other consumer FFF printers, since it uses the E3D V6 hotend and
Bondtech drive gears, which have emerged as pseudo-standards in low-cost printer
designs. These are also the main components that contribute to extruder phenomenol-
ogy, and are the same as those used in the machine that matches our reference
heuristics from Section 2.4.
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2.2 Data Gathering and Normalization

Each component of the hotend is fitted with a custom-designed circuit and local con-
trol logic. Devices are connected over a network to one another and to a systems
coordinator, written in JavaScript, that allows us to quickly write high-level routines
for data collection [33]. More details on this system are available in the repository ref-
erenced in the beginning of this section. We used this system to develop a simple data
gathering routine whose steps are enumerated below.

Fig. 3 Here we show cleaned data traces from samples taken across five flow rates 5mm3/s to
25mm3/s for ABS through a 0.8mm nozzle on an E3D V6 hot-end. During each trace, we set the
hot-end to near its maximum temperature of 290 ◦C, begin flowing filament at the requested rate,
and then simply turn the heating element off in the extruder. The resulting time-series gathers nozzle
pressure (as a raw loadcell reading, normalized from 0 → 1), across a decreasing range of temperatures
(and increasing pressures) as the nozzle cools naturally. Each point here is an individual data point.
They are collected at 200ms intervals. At a certain point, the extruder is unable to drive filament
at the operating pressure, and slip occurs. Our filament sensor detects this slip, and the experiment
is terminated. This figure also includes traces from our preliminary fit, which fits the data against
P = aT+b where P is normalized pressure and T is the nozzle temperature setpoint, as discussed in
Section 2.3.1.

1. The hotend is heated to its maximum temperature, or to the upper bound of the
desired dataset. In our case, this was 290 ◦C.

2. The hotend is purged with 10mm of filament.
3. The extruder is set to extrude continuously at the desired flowrate.
4. The hotend is turned off and allowed to cool towards ambient temperature, while

filament continues to be pushed into the hotend.

9



5. While filament is being extruded, we record a time-series of samples from the
extruder’s loadcell, filament sensor, and thermocouple at 200ms intervals.

6. We continuously use the filament sensor to estimate of the extruder’s real feedrate
against the requested rate. This gives us a drive percentage where i.e. 100% indi-
cates zero slip. We terminate the run when this value drops below 75%, indicating
major failure of the extruder to generate adequate force. We then store the dataset
for later analysis.

This procedure results in a series of pressure vs temperature traces, each at a
different flowrate. Figure 3 shows a series of these traces, each with a preliminary
exponential fit, whose parameters are rendered in Table 3. Traces can take between
90 seconds and five minutes to complete, meaning that (depending on the fidelity
desired) characterizing a new machine and material configuration takes between 10
and 30 minutes.

Data taken when the extruder is operating at relatively low nozzle pressures was
quite noisy, and so we exclude data points whose pressure readings are in the bottom
15% of the maximal (final) pressure. We additionally exclude data in the top 10% of
the pressure range, since points at or near extruder-gear slip are equally noisy.

Load values are normalized to span a simple 0 → 1 range, where 1 represents the
maximum extrusion force obtainable from the system before inducing slip, i.e. we use
P = Preading/Pmax where Preading is the raw loadcell reading (which we take to be
linear, but do not calibrate) and Pmax is the largest reading taken with the given
configuration.

We chose not to calibrate our load-cell values because the additional operating
complexity could be prohibitive in deployed systems, and because it introduces oppor-
tunity for user error. We also presumed that normalizing to the machine’s own maximal
extrusion force would provide enough utility (allowing us to pick viable parameters);
i.e. it is not necessary in this case to know the real pressures generated in the nozzle,
only the relative pressures. We acknowledge that this limits our ability to compare
data between two different machines, or to perform more advanced rheology on the
data.

2.3 Function Fitting

2.3.1 Fitting Individual Flowrates

Once data are collected and cleaned, we do a preliminary function fit for each unique
flowrate against a generic exponential function 1.

P = aT+b (1)

Where P is the expected normalized pressure at temperature T (◦C) and a, b are
parameters that we fit using the Levenberg-Marquardt algorithm as implemented in
the scipy compute package [34]. A sample of these fits is rendered in Figure 3 and
Table 3.

We were surprised at the quality of the fit from such a simple function, and were
encouraged to find a and b parameters were somewhat interpretable; the b parameter
maps nicely to the temperature where nozzle back pressure exceeds the extruder’s
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drive gear traction (i.e. where slippage begins to occur) and functions as an effective
minimum temperature for the given flowrate. The a parameter then maps to the rate
at which nozzle pressure drops off, at the given flowrate, as temperature is increased.
For example with small flowrates a has a stronger exponent (a ≈ 0.95), meaning that
pressures drop drastically as temperature increases, whereas large flowrates drop off
less drastically (a ≈ 0.99).

Table 3 Here we show fit parameters for data traces rendered in Figure 3 that match data against

P = aT+b where P is normalized pressure and T is the nozzle temperature setpoint, as discussed in
Section 2.3

Flow Rate Q (mm3/s) a b

5.0 0.953 -155
10.0 0.960 -167
15.0 0.970 -181
20.0 0.976 -201
25.0 0.980 -225

We suspect that these changes in a relate mostly to the thermodynamics of the
melting filament. Recalling that our hardware only measures the hotend temperature
at some point in the heat block (not the actual melt-flow temperature) we can make
some sense of this. At lower flowrates, any given section of filament spends more time
in the hotend’s melt zone, meaning there is more time to complete the heat transfer.
This correlates to smaller values of a, i.e. more pronounced decrease of pressure with
respect to temperature; all of the temperature increase is realized in the melt flow. On
the other hand, larger flowrates correspond to smaller drops in pressure with respect
to temperature, since the filament does not have enough time in the melt zone to
completely come up to the nozzle’s setpoint temperature. In Section 4.1, we discuss the
possibility of extracting a thermodynamic model more directly, using the same data.

2.3.2 Fitting Entire Operating Spaces

We extended these fits for individual flowrates across the contour P = f(T,Q) to map
expected pressure as a function of any chosen operating temperature and flowrate.
We observed that best-fit parameters for b were typically quadratic with respect to
flowrate, and a parameters tangentially approached 1.0 with respect to flowrate, and
developed Equation 2 with parameters c, d, e and f that we fit again using the same
nonlinear least squares method. An example of one such fit is rendered in the plot at
Figure 4.

a = −cQ+d + 1

b = eQ2 + f

P = (−cQ+d + 1)T+eQ2+f

(2)

Interpretation of the c, d, e and f parameters are better understood with relation to
their a and b counterparts: for example f maps to b at zero flow, meaning a temperature
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where flow is impossible even at near-zero speeds (or more directly, where we would
expect that measured pressure would equal 1.0, or the maximum pressure observed
in the system prior to drive gear slip). The e parameter then indicates how quickly
minimum temperatures increase with respect to flow rates. Parameters c and d seem
less straightforward in their interpretability, given that the a from single fits is anyways
fairly abstract.

Fig. 4 Here we show a contour describing pressure P as a function of flowrate and temperature, as
mapped to data from a 0.8mm nozzle in an E3D V6 Hotend using ABS filament. This fit matches
parameters to Equation 2: c = 0.957, d = 65.2, e = −0.116, f = −154. Here we also show the
temperature of first-flow (marked with a circle, around 150 ◦C) and our system’s selected maximal
flowrate parameter (marked with a diamond, at 250 ◦C and 23.5 mm3/s) as described in Section 2.4.

2.4 Extracting Real Parameters from Function Fits using
Input Parameters

Our function fits are a useful underlying abstraction to describe expected nozzle pres-
sures across a range of operating conditions, but they can’t tell us exactly what an
optimal operating condition might be. For example, were we to suppose that print
speed alone were optimal, our functions would tell us that printers should be operated
near their maximum temperatures at all times - but existing practice shows this not
to be the case. In order to deploy our function fits in available slicers and compare
their outputs with existing heuristics, we deploy a set of input parameters that map
between real-world and function-fit locations.
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The first parameter is Trel, an offset in ◦C from the temperature identified in the
function fit as the location where flow is first possible. For example, the function fit in
Figure 4 reports initial flow at 154 ◦C, meaning a Trel = 80 ◦C would select T = 234 ◦C;
i.e. Toperating = TfirstF low + Trel. The second parameter is a relative pressure Prel. It
selects a flowrate at the provided temperature, by specifying desired nozzle pressure
from 0 → 1, where 1 is the maximum flow possible before exceeding the extruder’s
generative force.

We reasoned that, given our function fits as an underling abstraction, we could
find one set of input parameters that would suit all machine configurations. To do
so, we compared our function fits against heuristics for two common materials (PLA
and ABS) with one highly common machine configuration (an E3D V6 Hotend with
a 0.4mm Nozzle) and one rare configuration (the same hotend with a 0.8mm Nozzle).
The results from that comparison are in Tables 4 and 5. The tables also references four
varying flowrates, each of which is found within state-of-the-art slicers: an explicitly
set max rate, and then tracks with high, medium and low relative geometric
importance (which are implicitly set). Based on this comparison, and using our own
heuristic understanding of the process, we reasoned that we would select a Trel = 80 ◦C
and Prel = 0.75, 0.20, 0.10 and 0.05 for maximum rates and low, medium and high
track importance respectively.

Table 4 Here we tabulate heuristic nozzle set-points against temperatures of first-flow from data
gathered using our tool and function fit, to inform our choice of a stable input parameter for Trel.

Material, Nozzle Heuristic (◦C)1 First Flow (◦C)2 Equivalent Trel(
◦C)

PLA 0.4 210 141.8 68.2
ABS 0.4 255 166.6 88.4

PLA 0.8 220 136.6 83.4
ABS 0.8 265 154.4 110.6

1Extracted from PrusaSlicer 2.5.0 using Generic polymer profiles.
2Using a 0.4mm Nozzle with an E3D V6 Hotend

2.5 System Summary

Our end-to-end method for the automatic selection of print parameters is complete
in five steps, which we diagram in Figure 5. First, we use our instrumented extruder
(outfit with the same hotend hardware as our test printer) to generate a dataset.
That dataset is fit against the described function, and that function fit is used to
extract real parameters using our chosen input parameters. To show the viability of
this method for extending heuristics across multiple materials and nozzles, we used the
same input parameters in each print shown in the evaluations section; those parameters
are rendered in Table 6. Extracted parameters are then processed using an off-the-
shelf slicer (we used PrusaSlicer 2.5.0), and test instructions are sent to a test printer
(a Prusa MK3).
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Table 5 Here we compare heuristic flowrates into pressures as defined by our data gather and fit,
in order to inform our choice of stable input parameter for Prel.

Material, Nozzle Typical Rate Heuristic (mm3/s) Equivalent Prel (%)

PLA, 0.44 Max 15.0 0.681
High 1 7.20 0.092
Medium 2 4.05 0.044
Low 3 2.25 0.030

ABS, 0.4 Max 11.0 0.098
High 7.20 0.033
Medium 4.05 0.013
Low 2.25 0.007

PLA, 0.85 High 18.00 0.244
Medium 12.60 0.074
Low 9.00 0.026

ABS, 0.8 High 18.00 0.142
Medium 12.60 0.044
Low 9.00 0.018

1External Perimeters, Small Perimeters, Bridges, Gap Fill
2Perimeters, Top Solid Infill, Support Material, Support Interface
3Infill and Solid Infill
4For 0.4mm nozzles, we calculated flowrates using 0.2mm track heights and 0.45mm track widths,
which are defaults in the PrusaSlicer ”Quality” print configurations.
5For 0.8mm nozzles, we calculated flowrates using 0.4mm track heights and 0.90mm widths, which
are defaults in the PrusaSlicer ”Quality” print configurations.

Table 6 The input parameters that we chose to use in our deployment of our system in the
evaluation / results section of this paper.

Material, Nozzle Typical Rate Selected Trel(
◦C) Selected Prel

Any, Any, Max 80 0.750
High 80 0.250
Medium 80 0.100
Low 80 0.050

3 Results

We printed the 3DBenchy model using parameters generated with our method in order
to demonstrate its viability. In Figure 6 we include images of the resulting prints,
and Table 7 we include the temperature and flowrate parameters that the method
produced, including (for reference) the heuristic data that was available to us once we
had purchased these filaments.

Our method produced temperature selections that were within the manufacturer’s
specification in all but one case, and was able to automatically produce viable flowrate
parameters where none were otherwise available. None of the prints resulted in failures
of any kind, although stringing was visible in two of the four filaments tested.
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Fig. 5 In our evaluation of this method to automatically select print parameters, we deploy the
function fit and test data on test prints, by matching a test printers’ hotend configuration to that of
the instrumented extruder and running extracted parameters through an off-the-shelf slicer.

Fig. 6 We deployed our process to produce print parameters for six unique machine, material config-
urations. We then used those parameters to print the 3DBenchy model [35], a common benchmarking
artefact amongst FFF users and researchers. We include here one model printed using heuristically
available parameters, which is marked with an asterisk. Our method was able to produce viable print
parameters for each filament we tested.

4 Limitations and Future Work

The basic premise in this work is that FFF print parameters should be based mostly
on FFF phenomenology; namely nozzle temperatures and flowrates. We reasoned that,
if we were able to characterize just this process using a simple abstraction, we could
make improvements to the way print parameters are selected, using data as a basis for
parameter selection rather than simply trialling heuristic selections. While our process
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Table 7 Here we include the parameters generated by our process during our evaluation, matching
the images of printed artefacts from Figure 6.

Configuration
Heuristic Our Method

Temp Flows Time Temp Flows Time
◦C mm3/s min ◦C mm3/s min

Generic PLA 0.4 210 7.20, 4.05, 2.25 89 222 12.71, 9.39, 6.84 78

Woodfill PLA 0.41 190-210 not provided n/a 223 12.92, 9.64, 7.12 33

ALGA 0.4 185-210 not provided n/a 206 15.63, 11.81, 8.96 79

ALGA 0.8 185-210 not provided n/a 203 19.37, 14.86, 12.1 33

Bio PETG 0.4 225-230 not provided n/a 236 13.95, 7.47, 1.69 94

Bio PETG 0.8 225-230 not provided n/a 216 15.35, 8.11, 2.75 53

140% Wood

does work fairly well, it has become clear to us that nozzle phenomenology alone is
not enough to select parameters.

4.1 Extracting Thermodynamic Models from Data Traces

In Section 2.3.1 we noted that the a parameter is likely related to nozzle thermodynam-
ics, observing that lower flowrates correspond to more pronounced pressure dropoff
with respect to temperatures (more complete heat transfer) and higher flowrates to
more ”stubborn” pressure traces. We suspect that, at higher rates, the filament sim-
ply does not spend enough time in the melt zone to come up to the nozzle’s setpoint
temperature.

These thermodynamics are a key limit to FFF printing, as studied extensively
in [27]. Optimal control of an FFF machine should include a thermodynamic model
of the hotend that could explain the phenomenology we observe in our data, and it
seems likely to us that extracting such a model from the datasets generated here is
possible. To illustrate the presence of calorimetric data here, we include Figure 7 that
renders the same data from Figure 7 but re-organized to show how different flowrates
correspond to varying rates of hotend cooling.

4.2 Integrating with Motion Control and Slicing

A core limit to our method is that the slicing process itself is entirely disconnected from
actual real-time control of FFF systems. Because motion controllers apply trajectory
optimizations on top of selected parameters, flowrates that we select are sometimes not
actually achieved during machine operation. This is a broader limit to the advancement
of the FFF process that is discussed in more detail in [11]. A similar limit is present
to researchers of five-axis machining toolpaths [36].

This is clear also when we look at our results for six 3DBenchy prints in Table
7; while our method selects flowrates that are roughly twice that of the heuristic
selections, the benchy part is only produced 12% faster overall. This is indicative
that the machine’s overall rate was more constrained by acceleration limits than by
flowrate limits.
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Fig. 7 Here we show the potential of capturing thermodynamic data from the data gathering pro-
cedure discussed in Section 2.2. This plot renders hotend temperature over time, and shows that
increases in flowrate result in faster drops in temperature due to increases in the heat transfer into the
melt flow. We hope that, in future work, we can extract simple thermodynamic models of a machine’s
hotend using the same type of data.

Combining motion control optimizations with FFF-specific optimizations on
flowrates and temperatures is a logical next step, and we are also developing a modular,
software-based motion controller code to do so [37].

4.3 Evaluation Methods

We should acknowledge that this paper itself carries out a limited evaluation of the
method, using only qualitative analysis of print quality and a simple quantitative
printing speed metric. An improved study could implement a more rigorous geometric
analysis of printed parts for accuracy, as well as layer adhesion and part strength tests.

5 Conclusion

While this work does not make a complete reckoning with all of the phenomenology and
modeling associated with FFF printing that may be required in order to select optimal
parameters, it does show that even simple methods in combination with instrumented
hardware and workflows that connect machines to slicers can have promising results.

We showed that a small dataset, generated quickly using online FFF instrumenta-
tion, can be enough to automatically select print parameters for otherwise unknown
machine configurations.

The method holds particular relevance for individuals involved in slicer authorship,
machine design, and related domains as it provides an alternative to the exhaustive
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and labor-intensive process of hand-tuning parameter sets. We hope that the work will
contribute to the ongoing proliferation of FFF, the adoption of more novel machine
designs and filament selections, and an increased ubiquity of making in the world.
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