// // cudapip.cu // Neil Gershenfeld 7/14/20 // calculation of pi by a CUDA multi-GPU peer sum // pi = 3.14159265358979323846 // #include <iostream> #include <chrono> #include <cstdint> uint64_t blocks = 1024; uint64_t threads = 1024; uint64_t nloop = 1000000; uint64_t npts = blocks*threads; using namespace std; __global__ void init(double *arr,uint64_t nloop,uint64_t npts,int ngpus,int index) { uint64_t i = blockIdx.x*blockDim.x+threadIdx.x; uint64_t start = nloop*i+npts*nloop*index+1; uint64_t end = nloop*(i+1)+npts*nloop*index+1; arr[i+index*npts] = 0; for (uint64_t j = start; j < end; ++j) arr[i+index*npts] += 0.5/((j-0.75)*(j-0.25)); } void cudaCheck(string msg) { cudaError err; err = cudaGetLastError(); if (cudaSuccess != err) cerr << msg << ": " << cudaGetErrorString(err) << endl; } int main(void) { double *arr,*darr; int ngpus; cudaGetDeviceCount(&ngpus); arr = new double[ngpus*npts]; cudaSetDevice(0); cudaMalloc(&darr,ngpus*npts*sizeof(double)); for (int i = 1; i < ngpus; ++i) { cudaSetDevice(i); cudaDeviceEnablePeerAccess(0,0); cudaCheck("peer access"); } auto tstart = chrono::high_resolution_clock::now(); for (int i = 0; i < ngpus; ++i) { cudaSetDevice(i); init<<<blocks,threads>>>(darr,nloop,npts,ngpus,i); } for (int i = 1; i < ngpus; ++i) { cudaSetDevice(i); cudaDeviceSynchronize(); } cudaSetDevice(0); cudaMemcpy(arr,darr,ngpus*npts*sizeof(double),cudaMemcpyDeviceToHost); double pi = 0; for (int i = 0; i < ngpus*npts; ++i) pi += arr[i]; auto tend = chrono::high_resolution_clock::now(); auto dt = chrono::duration_cast<std::chrono::microseconds>(tend-tstart).count(); auto gflops = npts*nloop*ngpus*5.0/dt/1e3; std::cout << "npts: " << npts << " nloop: " << nloop << " ngpus: " << ngpus << " pi: " << pi << '\n'; std::cout << "time: " << 1e-6*dt << " estimated GFlops: " << gflops << '\n'; return 0; }