# trace_skeleton.py # Trace skeletonization result into polylines # # Lingdong Huang 2020 import numpy as np # binary image thinning (skeletonization) in-place. # implements Zhang-Suen algorithm. # http://agcggs680.pbworks.com/f/Zhan-Suen_algorithm.pdf # @param im the binary image def thinningZS(im): prev = np.zeros(im.shape,np.uint8); while True: im = thinningZSIteration(im,0); im = thinningZSIteration(im,1) diff = np.sum(np.abs(prev-im)); if not diff: break prev = im return im # 1 pass of Zhang-Suen thinning def thinningZSIteration(im, iter): marker = np.zeros(im.shape,np.uint8); for i in range(1,im.shape[0]-1): for j in range(1,im.shape[1]-1): p2 = im[(i-1),j] ; p3 = im[(i-1),j+1]; p4 = im[(i),j+1] ; p5 = im[(i+1),j+1]; p6 = im[(i+1),j] ; p7 = im[(i+1),j-1]; p8 = im[(i),j-1] ; p9 = im[(i-1),j-1]; A = (p2 == 0 and p3) + (p3 == 0 and p4) + \ (p4 == 0 and p5) + (p5 == 0 and p6) + \ (p6 == 0 and p7) + (p7 == 0 and p8) + \ (p8 == 0 and p9) + (p9 == 0 and p2); B = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9; m1 = (p2 * p4 * p6) if (iter == 0 ) else (p2 * p4 * p8); m2 = (p4 * p6 * p8) if (iter == 0 ) else (p2 * p6 * p8); if (A == 1 and (B >= 2 and B <= 6) and m1 == 0 and m2 == 0): marker[i,j] = 1; return np.bitwise_and(im,np.bitwise_not(marker)) def thinningSkimage(im): from skimage.morphology import skeletonize return skeletonize(im).astype(np.uint8) def thinning(im): try: return thinningSkimage(im) except: return thinningZS(im) #check if a region has any white pixel def notEmpty(im, x, y, w, h): return np.sum(im) > 0 # merge ith fragment of second chunk to first chunk # @param c0 fragments from first chunk # @param c1 fragments from second chunk # @param i index of the fragment in first chunk # @param sx (x or y) coordinate of the seam # @param isv is vertical, not horizontal? # @param mode 2-bit flag, # MSB = is matching the left (not right) end of the fragment from first chunk # LSB = is matching the right (not left) end of the fragment from second chunk # @return matching successful? # def mergeImpl(c0, c1, i, sx, isv, mode): B0 = (mode >> 1 & 1)>0; # match c0 left B1 = (mode >> 0 & 1)>0; # match c1 left mj = -1; md = 4; # maximum offset to be regarded as continuous p1 = c1[i][0 if B1 else -1]; if (abs(p1[isv]-sx)>0): # not on the seam, skip return False # find the best match for j in range(len(c0)): p0 = c0[j][0 if B0 else -1]; if (abs(p0[isv]-sx)>1): # not on the seam, skip continue d = abs(p0[not isv] - p1[not isv]); if (d < md): mj = j; md = d; if (mj != -1): # best match is good enough, merge them if (B0 and B1): c0[mj] = list(reversed(c1[i])) + c0[mj] elif (not B0 and B1): c0[mj]+=c1[i] elif (B0 and not B1): c0[mj] = c1[i] + c0[mj] else: c0[mj] += list(reversed(c1[i])) c1.pop(i); return True; return False; HORIZONTAL = 1; VERTICAL = 2; # merge fragments from two chunks # @param c0 fragments from first chunk # @param c1 fragments from second chunk # @param sx (x or y) coordinate of the seam # @param dr merge direction, HORIZONTAL or VERTICAL? # def mergeFrags(c0, c1, sx, dr): for i in range(len(c1)-1,-1,-1): if (dr == HORIZONTAL): if (mergeImpl(c0,c1,i,sx,False,1)):continue; if (mergeImpl(c0,c1,i,sx,False,3)):continue; if (mergeImpl(c0,c1,i,sx,False,0)):continue; if (mergeImpl(c0,c1,i,sx,False,2)):continue; else: if (mergeImpl(c0,c1,i,sx,True,1)):continue; if (mergeImpl(c0,c1,i,sx,True,3)):continue; if (mergeImpl(c0,c1,i,sx,True,0)):continue; if (mergeImpl(c0,c1,i,sx,True,2)):continue; c0 += c1 # recursive bottom: turn chunk into polyline fragments; # look around on 4 edges of the chunk, and identify the "outgoing" pixels; # add segments connecting these pixels to center of chunk; # apply heuristics to adjust center of chunk # # @param im the bitmap image # @param x left of chunk # @param y top of chunk # @param w width of chunk # @param h height of chunk # @return the polyline fragments # def chunkToFrags(im, x, y, w, h): frags = [] on = False; # to deal with strokes thicker than 1px li=-1; lj=-1; # walk around the edge clockwise for k in range(h+h+w+w-4): i=0; j=0; if (k < w): i = y+0; j = x+k; elif (k < w+h-1): i = y+k-w+1; j = x+w-1; elif (k < w+h+w-2): i = y+h-1; j = x+w-(k-w-h+3); else: i = y+h-(k-w-h-w+4); j = x+0; if (im[i,j]): # found an outgoing pixel if (not on): # left side of stroke on = True; frags.append([[j,i],[x+w//2,y+h//2]]) else: if (on):# right side of stroke, average to get center of stroke frags[-1][0][0]= (frags[-1][0][0]+lj)//2; frags[-1][0][1]= (frags[-1][0][1]+li)//2; on = False; li = i; lj = j; if (len(frags) == 2): # probably just a line, connect them f = [frags[0][0],frags[1][0]]; frags.pop(0); frags.pop(0); frags.append(f); elif (len(frags) > 2): # it's a crossroad, guess the intersection ms = 0; mi = -1; mj = -1; # use convolution to find brightest blob for i in range(y+1,y+h-1): for j in range(x+1,x+w-1): s = \ (im[i-1,j-1]) + (im[i-1,j]) +(im[i-1,j+1])+\ (im[i,j-1] ) + (im[i,j]) + (im[i,j+1])+\ (im[i+1,j-1]) + (im[i+1,j]) + (im[i+1,j+1]); if (s > ms): mi = i; mj = j; ms = s; elif (s == ms and abs(j-(x+w//2))+abs(i-(y+h//2)) < abs(mj-(x+w//2))+abs(mi-(y+h//2))): mi = i; mj = j; ms = s; if (mi != -1): for i in range(len(frags)): frags[i][1]=[mj,mi] return frags; # Trace skeleton from thinning result. # Algorithm: # 1. if chunk size is small enough, reach recursive bottom and turn it into segments # 2. attempt to split the chunk into 2 smaller chunks, either horizontall or vertically; # find the best "seam" to carve along, and avoid possible degenerate cases # 3. recurse on each chunk, and merge their segments # # @param im the bitmap image # @param x left of chunk # @param y top of chunk # @param w width of chunk # @param h height of chunk # @param csize chunk size # @param maxIter maximum number of iterations # @param rects if not null, will be populated with chunk bounding boxes (e.g. for visualization) # @return an array of polylines # def traceSkeleton(im, x, y, w, h, csize, maxIter, rects): frags = [] if (maxIter == 0): # gameover return frags; if (w <= csize and h <= csize): # recursive bottom frags += chunkToFrags(im,x,y,w,h); return frags; ms = im.shape[0]+im.shape[1]; # number of white pixels on the seam, less the better mi = -1; # horizontal seam candidate mj = -1; # vertical seam candidate if (h > csize): # try splitting top and bottom for i in range(y+3,y+h-3): if (im[i,x] or im[(i-1),x] or im[i,x+w-1] or im[(i-1),x+w-1]): continue s = 0; for j in range(x,x+w): s += im[i,j]; s += im[(i-1),j]; if (s < ms): ms = s; mi = i; elif (s == ms and abs(i-(y+h//2))<abs(mi-(y+h//2))): # if there is a draw (very common), we want the seam to be near the middle # to balance the divide and conquer tree ms = s; mi = i; if (w > csize): # same as above, try splitting left and right for j in range(x+3,x+w-2): if (im[y,j] or im[(y+h-1),j] or im[y,j-1] or im[(y+h-1),j-1]): continue s = 0; for i in range(y,y+h): s += im[i,j]; s += im[i,j-1]; if (s < ms): ms = s; mi = -1; # horizontal seam is defeated mj = j; elif (s == ms and abs(j-(x+w//2))<abs(mj-(x+w//2))): ms = s; mi = -1; mj = j; nf = []; # new fragments if (h > csize and mi != -1): # split top and bottom L = [x,y,w,mi-y]; # new chunk bounding boxes R = [x,mi,w,y+h-mi]; if (notEmpty(im,L[0],L[1],L[2],L[3])): # if there are no white pixels, don't waste time if(rects!=None):rects.append(L); nf += traceSkeleton(im,L[0],L[1],L[2],L[3],csize,maxIter-1,rects) # recurse if (notEmpty(im,R[0],R[1],R[2],R[3])): if(rects!=None):rects.append(R); mergeFrags(nf,traceSkeleton(im,R[0],R[1],R[2],R[3],csize,maxIter-1,rects),mi,VERTICAL); elif (w > csize and mj != -1): # split left and right L = [x,y,mj-x,h]; R = [mj,y,x+w-mj,h]; if (notEmpty(im,L[0],L[1],L[2],L[3])): if(rects!=None):rects.append(L); nf+=traceSkeleton(im,L[0],L[1],L[2],L[3],csize,maxIter-1,rects); if (notEmpty(im,R[0],R[1],R[2],R[3])): if(rects!=None):rects.append(R); mergeFrags(nf,traceSkeleton(im,R[0],R[1],R[2],R[3],csize,maxIter-1,rects),mj,HORIZONTAL); frags+=nf; if (mi == -1 and mj == -1): # splitting failed! do the recursive bottom instead frags += chunkToFrags(im,x,y,w,h); return frags if __name__ == "__main__": import cv2 import random im0 = cv2.imread("../test_images/opencv-thinning-src-img.png") im = (im0[:,:,0]>128).astype(np.uint8) # for i in range(im.shape[0]): # for j in range(im.shape[1]): # print(im[i,j],end="") # print("") # print(np.sum(im),im.shape[0]*im.shape[1]) im = thinning(im); # cv2.imshow('',im*255);cv2.waitKey(0) rects = [] polys = traceSkeleton(im,0,0,im.shape[1],im.shape[0],10,999,rects) for l in polys: c = (200*random.random(),200*random.random(),200*random.random()) for i in range(0,len(l)-1): cv2.line(im0,(l[i][0],l[i][1]),(l[i+1][0],l[i+1][1]),c) cv2.imshow('',im0);cv2.waitKey(0)